为了未来好一点,现在苦一点有什么。下面是小编整理的高一数学说课稿,欢迎大家阅读和收藏一下噢。
高一数学说课稿1
一、教材分析
1、教材的地位与作用
模拟方法是北师大版必修3第三章概率第3节,也是必修3最后一节,本节内容是在学习了古典概型的基础上,用模拟方法估计一些用古典概型解决不了的实际问题的概率,使学生初步体会几何概型的意义;而模拟试验是培养学生动手能力、小组合作能力、和试验分析能力的好素材。
2、教学重点与难点
教学重点:借助模拟方法来估计某些事件发生的概率;
几何概型的概念及应用
体会随机模拟中的统计思想:用样本估计总体。
教学难点:设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析;
应用随机数解决各种实际问题。
二、教学目标:
1、知识目标:使学生了解模拟方法估计概率的实际应用,初步体会几何概型的意义;并能够运用模拟方法估计概率。
2、能力目标:培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。
3、情感目标:鼓励学生动手试验,探索、发现规律并解决实际问题,激发学生学习的兴趣。
三、过程分析
1、创设良好的学习情境,激发学生学习的欲望
从学生的生活经验和已有知识背景出发,提出用学过知识不能解决的问题:房间的纱窗破了一个小洞,随机向纱窗投一粒小石子,估计小石子从小洞穿过的概率。能用古典概型解决吗?为什么?从而引起认知矛盾,激发学生学习、探究的兴趣。
2、以实验和问题引导学习活动,使学生经历“数学化”、“再创造”的过程
通过两个实验:(1)取一个矩形,在面积为四分之一的部分画上阴影,随机地向矩形中撒一把豆子(我们数100粒),统计落在阴影内的豆子数与落在矩形内的总豆子数,观察它们有怎样的比例关系?(2)反过来,取一个已知长和宽的矩形,随机地向矩形中撒一把豆子,统计落在阴影内的豆子数与落在矩形内的总豆子数,你能根据豆子数得到什么结论?
让学生分组合作,利用课前准备的材料进行试验、讨论、分析,使学生主动进入探究状态,充分调动学生学习积极性,使他们感受到探讨数学问题的乐趣,培养学生与他人合作交流的能力以及团队精神。根据各小组试验结果,提出问题,引导学生进行猜想,得出结论:
使学生了解结论产生的背景,轻易地理解了这个结论,并培养学生数据分析能力、抽象概括能力。让他们感觉到数学定理、结论其实离他们很近,增强学生学习的动力和信心。
3、类比迁移,注重数学与实际联系,发展学生应用意识和能力
(1)求不规则图形面积
如图,曲线y=-x2+1与x轴,y轴围成区域A,
如何求阴影部分面积?
通过把不规则图形放在规则的、
易求面积的图形中,利用模拟方法
求不规则图形面积,在解决问题时
学生提出了借助不同图形,教师要
引导学生用最佳图形。让学生把不熟
悉的问题转化为熟悉的问题情
境,引导学生利用已有知识解决新
的问题,培养学识知识应用、类比迁移的能力。
本例通过介绍用计算机产生随机数来模拟,使学生了解现代信息技术的应用,了解另一种模拟方法。
(2)估计圆周率π的值
让学生设计模拟试验,估计圆周率π的值,培养学生应用数学的意识,使学习过程成为学生的再创造过程。达到本课的目标,使学生了解模拟方法估计概率的实际应用,能够运用模拟方法估计概率。通过设计和操作模拟试验,对得出数据进行统计、分析,解决本课难点。让学生体验数学的发现和创造过程,发展他们的创新意识。同时通过对介绍古代数学家祖冲之,对学生进行爱国主义教育,培养学生爱国情操。
(3)几何概型概率计算方法
①通过问题:如果正方形面积不变,但形状改变,所得比例发生变化吗?
引出几何概型的概念、特点和计算公式
把试验的结论上升到理论,使学生的认识有一个从试验到理论的升华,使学生掌握基本概念,并运用理论解决问题,使学生的认识有一个质的飞跃,
②例:如图,在墙上挂着一块边长为16cm的正方形木板,
上面画了小、中、大三个同心圆,半径分别为2cm、4cm、
6cm,某人站在3m处向此板投镖,设投镖击中线上或没有
投中木板时都不算,可重投。
问:(1)投中大圆内的概率是多少?
(2)投中小圆和中圆形成的圆环的概率是多少?
配套习题是知识的直接运用,有助于学生巩固新学的知识,使学生掌握基本知识和技能。
③通过介绍本章开篇中“蒲丰投针”问题,利用计算机动态显示投针试验,使学生对此试验有初步了解,开阔学生视野,体现数学的文化价值,留给学生课后探究的空间。
4、通过实际问题:小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐。(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪一种可能性更大?(2)晚报在晚餐开始之前被送到的概率是多少?
引导学生利用转盘设计试验,并分组进行试验,鼓励学生自主探索与合作交流,培养学生创新意识,并使学生了解模拟形式的多样化,并通过模拟进一步熟悉试验的操作,提高动手能力和小组协调能力。通过问题拓展,介绍用理论解决的方法,激起学生再探究的欲望,留给学生课后思考的空间。
4、课堂小结
由学生总结本节课所学习的主要内容,让学生对所学内容有全面、系统的认识。
四、教法、学法分析
本节课是在采用信息技术和数学知识整合的基础上从生活实际中提炼数学素材,使学生在熟悉的背景下、在认知冲突中展开学习,通过试验活动的开展,使学生在试验、探究活动中获取原始数据,进而通过数与形的类比,在老师的引导、启发下感悟出模拟的数学结论,通过结论的运用提升为数学模型并加以应用,它实现了学生在学习过程中对知识的探究、发现的创作经历,调动了学生学习的积极性和主动性,同学们在亲身经历知识结论的探究中获得了对数学价值的新认识。
五、评价分析
本课是使学生通过试验掌握用模拟方法估计概率,主要是用分组合作试验、探究方法研究数学知识,因此评价时更注重探究和解决问题的全过程,鼓励学生的探索精神,引导学生对问题的正确分析与思考,关注学生提出问题、参与解决问题的全过程,关注学生的创新精神和实践能力。
高一数学说课稿2
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析
对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
二、教法分析
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、学法指导
在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①
3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一个数列公差0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
高一数学说课稿3
一、教学背景
1、教材分析
《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。
2、学情分析
刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。
基于以上分析,我制定如下教学目标及重、难点:
3、教学目标
知识与技能:
初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。
过程与方法:
经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。
情感态度与价值观:
培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。
4、教学重、难点
重点:理解对数函数的概念,掌握对数函数的图象及性质。
难点:由图象探究函数性质,应用性质解决具体问题。
二、教学方法及手段
1、教法
根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。
2、学法
(1)类比学习:通过指数函数类比学习对数函数。
(2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。
3、教学手段
采用多媒体辅助教学。
三、教学教程
1、情境引入
通过银行的复利计算问题,逐步引出对数函数。
设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。
2、新知探索
通过上述模型,让学生给对数函数下定义。
学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。
以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。
例比较下列各组数中两个值的大小:
(1)log23.4和log28.5;
(2) log0.33.4和log0.38.5;
(3) loga3.4和loga8.5(a>0,且a≠1);
(4) log23.4和log3.42;
(5) log3.42和log0.38.5。
3、巩固练习
(1)比较大小:
lg6________lg8;ln1.3________
(2)比较正数m,n的大小:
若,则m_____n;若,则m_____n.
4、总结提炼
(1)自主探究新知识的方法;
(2)本节课应用了哪些数学思想。
5、布置作业
(1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;
(2)教材P74—7、8
四、板书设计
2.2.2对数函数及其性质
一、概念例题
二、图象
三、性质
四、教学反思
高一数学说课稿4
一、教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二、目标分析:
教学重点。难点
重点:集合的含义与表示方法。难点:表示法的恰当选择。
教学目标
1、知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性。互异性。无序性;
(4)会用集合语言表示有关数学对象;
2、过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3、情感。态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性。
三、教法分析
1、教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。2、教学手段:在教学中使用投影仪来辅助教学。
四、过程分析
(一)创设情景,揭示课题
1、教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流。与此同时,教师对学生的活动给予评价。
2、活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1、教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体。
2、教师组织学生分组讨论:这7个实例的共同特征是什么?
3、每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。
4、教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示。
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1、教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。
2、教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流。让学生充分发表自己的建解。
3、让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。
4、教师提出问题,让学生思考
b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,
高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。
如果a是集合A的元素,就说a属于集合A,记作a?A。
如果a不是集合A的元素,就说a不属于集合A,记作a?A。
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。
(3)让学生完成教材第6页练习第1题。
5、教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1。1A组第1题。
6、教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言。列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9};(2)用例举法表示集合A?{x?N|1?x?8}
(3)试选择适当的方法表示下列集合:教材第6页练习第2题。
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1、本节课我们学习了哪些知识内容?
2、你认为学习集合有什么意义?
3、选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1、课后书面作业:第13页习题1.1A组第4题。
2、元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材。
五\板书分析
高一数学说课稿5
一、教材分析。
1、教学目标:
(1)理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;
(2)培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
(3)通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
2、教学重点和难点:
(1)等差数列的概念。
(2)等差数列的通项公式的推导过程及应用。用不完全归纳法推导等差数列的通项公式。
二、教法分析。
采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、教学程序。
本节课的教学过程由:(一)复习引入;(二)新课探究;(三)应用例解;(四)反馈练习;(五)归纳小结;(六)布置作业,六个教学环节构成。
(一)复习引入:
1、全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是cm)分别是21,22,23,24,25。
2、某剧场前10排的座位数分别是:38,40,42,44,46,48,50,52,54,56。
3、某长跑运动员7天里每天的训练量(单位:m)是:7500,8000,8500,9000,9500,10000,10500。
共同特点:从第2项起,每一项与前一项的差都等于同一个常数。
(二) 新课探究。
1、给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
(1)“从第二项起”满足条件;
(2)公差d一定是由后项减前项所得;
(3)公差可以是正数、负数,也可以是0。
2、推导等差数列的通项公式:若等差数列{an }的首项是 ,公差是d, 则据其定义可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……进而归纳出等差数列的通项公式:= +(n—1)d
此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:– =d;– =d;– =d……– =d。
将这(n—1)个等式左右两边分别相加,就可以得到 – = (n—1) d即 = +(n—1) d
当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。
接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n—1)×2 , 即 =2n—1 以此来巩固等差数列通项公式运用
(三)应用举例。
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1 :
(1)求等差数列8,5,2,…的第20项;
(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?
第二问实际上是求正整数解的问题,而关键是求出数列的通项公式。
例2:
在等差数列{an}中,已知 =10, =31,求首项 与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固。
例3:
梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
(四)反馈练习。
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、若数列{ } 是等差数列,若 = k ,(k为常数)试证明:数列{ }是等差数列。
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结 。(由学生总结这节课的收获)
1、等差数列的概念及数学表达式。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2、等差数列的通项公式 = +(n—1) d会知三求一
(六) 布置作业。
1、必做题:课本P114 习题3。2第2,6 题。
2、选做题:已知等差数列{ }的首项 = —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
四、板书设计。
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
高一数学说课稿6
各位领导和老师,大家好!我说课的内容是苏教版必修1第1章第3节第一课时《交集、并集》,下面我想谈谈我对这节课的教学构想:
一、教材分析:
与传统的教材处理不同,本章在学生通过观察具体集合得到集合的补集的概念后,上升到数学内部,将“补”理解为集合间的一种“运算”。在此基础上,通过实例,使学生感受和掌握集合之间的另外两种运算—交和并。设计的思路从具体到理论,再回到具体,螺旋上升。集合作为一种数学语言,在后续的学习中是一种重要的工具。因此,在教学过程中要针对具体问题,引导学生恰当使用自然语言、图形语言和集合语言来描述相应的数学内容。有了集合的语言,可以更清晰的表达我们的思想。所以,集合是整个数学的基础,在以后的学习中有着极为广泛的应用。
基于以上的分析制定以下的教学目标
二、教学目标:
1、理解交集与并集的概念;掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合。 能用Venn图表示集合之间的关系;掌握两个集合的交集、并集的求法。
2、通过对交集、并集概念的学习,培养学生观察、比较、分析、概括的能力,使学生认识由具体到抽象的思维过程。
3、通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。
三、教学重点、难点:
针对以上的分析我把教学重点放在交集与并集的概念,一些集合的交集和并集的求法上。而把如何引导学生通过观察、比较、分析、概括出交集与并集的概念作为本节的教学难点。
四、教法、学法:
针对我们师范学校学生的特点,我本着低起点、高要求、循序渐进,充分调动学生学习积极性的原则,采用“五环节教学法”。同时利用多媒体辅助教学。
下面我重点说一说教学过程
六、教学过程:
第一个环节:问题情境
通过实例:学校举办了排球赛,08小教(2)56名同学中有12名同学参赛,后来又举办了田径赛,这个班有20名同学参赛。已知两项都参赛的有6名同学。两项比赛中,这个班共有多少名同学没有参加过比赛?让学生感受到数学与我们的生活息息相关,从而激发学生的学习兴趣。
学生思考后回答,然后老师加以引导,让学生的回答达到这样三个层次:
层次一:发现要求没有参加比赛的人数,首先应该算出参加比赛的人数,并且知道参加比赛的人数是12+20-6,而不是12+20,因为有6人既参加排球赛又参加田径赛。
层次二:老师引导学生利用集合的观点再来研究这个问题。先设利用Venn图来表示集合A,B,C.发现集合A,B的公共部分就是集合C.
层次三:引导学生发现集合C的元素的构成与集合A,B的元素的关系。学生可以发现集合C中的元素是由既参加排球比赛又参加田径比赛的同学构成的,更进一步集合C的元素是由既属于集合A的元素又属于集合B的元素构成的。
通过对三个层次的探究和分析让学生体验数学发现和创造的历程。
高一数学说课稿7
一、教材分析
1.教材中的地位及作用
本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。
2.教学目标的确定及依据
平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。
(1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、顶点、离心率、渐近线等几何性质;
②掌握双曲线标准方程中的几何意义,理解双曲线的渐近线的概念及证明;
③能运用双曲线的几何性质解决双曲线的一些基本问题。
(2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察能力,想象能力,数形结合能力,分析、归纳能力和逻辑推理能力,以及类比的学习方法;
②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的概念的理解。
(3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。
3.重点、难点的确定及依据
对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。
4.教学方法
这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。
渐近线是双曲线特有的
性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。
例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。
二、教学程序
(一).设计思路
(二).教学流程
1.复习引入
我们已经学习过椭圆的标准方程和双曲线的标准方程,以及椭圆的简单的几何性质,请同学们来回顾这些知识点,对学习的旧知识加以复习巩固,同时为新知识的学习做准备,利用多媒体工具的先进性,结合图像来演示。
2.观察、类比
这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,首先观察双曲线的形状,试着按照椭圆的几何性质,归纳总结出双曲线的几何性质。一般学生能用类似于推
导椭圆的几何性质的方法得出双曲线的范围、对称性、顶点、离心率,对知识的理解不能浮于表面只会看图,也要会从方程的角度来解释,抓住方程的本质。用多媒体演示,加强学生对双曲线的简单几何性质范围、对称性、顶点(实轴、虚轴)、离心率(不深入的讲解)的巩固。之后,比较双曲线的这四个性质和椭圆的性质有何联系及区别,这样可以加强新旧知识的联系,借助于类比方法,引起学生学习的兴趣,激发求知欲。
3.双曲线的渐近线的发现、证明
(1)发现
由椭圆的几何性质,我们能较准确地画出椭圆的图形。那么,由双曲线的几何性质,能否较准确地画出双曲线的图形为引例,让学生动笔实践,通过列表描点,就能把双曲线的顶点及附近的点较准确地画出来,但双曲线向远处如何伸展就不是很清楚。从而说明想要准确的画出双曲线的图形只有那四个性质是不行的。
从学生曾经学习过的反比例函数入手,而且可以比较精确的画出反比例函数的图像,它的图像是双曲线,当双曲线伸向远处时,它与x、y轴无限接近,此时x、y轴是的渐近线,为后面引出渐近线的概念埋下伏笔。从而让学生猜想双曲线有何特征?有没有渐近线?由于双曲线的对称性,我们只须研究它的图形在第一象限的情况即可。在研究双曲线的范围时,由双曲线的标准方程,可解出,,当x无限增大时,y也随之增大,不容易发现它们之间的微妙关系。但是如果将式子变形为,我们就会发现:当x无限增大,逐渐减小、无限接近于0,而就逐渐增大、无限接近于1();若将变形为,即说明此时双曲线在第一象限,当x无限增大时,其上的点与坐标原点之间连线的斜率比1小,但与斜率为1的直线无限接近,且此点永远在直线的下方。其它象限向远处无限伸展的变化趋势就可以利用对称性得到,从而可知双曲线的图形在远处与直线无限接近,此时我们就称直线叫做双曲线的渐近线。这样从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。
利用由特殊到一般的规律,就可以引导学生探寻双曲线(a>0,b>0)的渐近线,让学生同样利用类比的方法,将其变形为,,由于双曲线的对称性,我们可以只研究第一象限向远处的变化趋势,继续变形为,,可发现当x无限增大时,逐渐减小、无限接近于0,逐渐增大、无限接近于,即说明对于双曲线在第一象限远处的点与坐标原点之间连线的斜率比小,与斜率为的直线无限接近,且此点永远在直线下方。其它象限向远处无限伸展的变化趋势可以利用对称性得到,从而可知双曲线(a>0,b>0)的图形在远处与直线无限接近,直线叫做双曲线(a>0,b>0)的渐近线。我就是这样将渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。
(2)证明
如何证明直线是双曲线(a>0,b>0)的渐近线呢?
启发思考①:首先,逐步接近,转换成什么样的数学语言?(x→∞,d→0)
启发思考②:显然有四处逐步接近,是否每一处都进行证明?
启发思考③:锁定第一象限后,具体地怎样利用x表示d
(工具是什么:点到直线的距离公式)
启发思考④:让学生设点,而d的表达式较复杂,能否将问题进行转化?
分析:要证明直线是双曲线(a>0,b>0)的渐近线,即要证明随着x的增大,直线和曲线越来越靠拢。也即要证曲线上的点到直线的距离
|mQ|越来越短,因此把问题转化为计算|mQ|。但因|mQ|不好直接求得,因此又可以把问题转化为求|mN|。
启发思考⑤:这样证明后,还须交代什么?
(在其他象限,同理可证,或由对称性可知有相似情况)
引导学生层层深入的进行探究,从而更深刻的理解双曲线的渐近线的发现及证明过程。
(3)深化
再来研究实轴在y轴上的双曲线(a>0,b>0)的渐近线方程就会变得容易很多,此时可利用类比的方法或者利用对称性得到焦点在y轴上的双曲线的渐近线方程即为。
这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精确的画出双曲线。但是如果仔细观察渐近线实质就是双曲线过实轴端点、虚轴端点,作平行与坐标轴的直线所成的矩形的两条对角线,数形结合,来加强对双曲线的渐近线的理解。
4.离心率的几何意义
椭圆的离心率反映椭圆的扁平程度,双曲线离心率有何几何意义呢?不难得到:,这是刚刚学生在类比椭圆的几何性质时就可以得到的简单结论。通过对离心率的研究,同样也可以使学生进一步加深对渐近线的理解。
由等式,可得:,不难发现:e越小(越接近于1),就越接近于0,双曲线开口越小;e越大,就越大,双曲线开口越大。所以,双曲线的离心率反映的是双曲线的开口大小。通过对这些性质的探究,就可以更好的理解双曲线图形与这些基本量之间的关系,更加准确的作出双曲线的图形。
5.例题分析
为突出本节内容,使学生尽快掌握刚才所学的知识。我选配了这样的例题:
例1.求双曲线9x2-16y2=144的实半轴长和虚半轴长、顶点和焦点坐标、渐近线方程、离心率。选题目的在于拿到一个双曲线的方程之后若不是标准式,要先将所给的双曲线方程化为标准方程,后根据标准方程分别求出有关量。本题求渐近线的方程的方法:(1)直接根据渐近线方程写出;(2)利用双曲线的图形中的矩形框架的对角线得到。加强对于双曲线的渐近线的应用和理解。
变1:求双曲线9y2-16x2=144的实半轴长和虚半轴长、顶点和焦点坐标、渐近线方程、离心率。选题目的:和上题相同先将所给的双曲线方程化为标准方程,后根据标准方程分别求出有关量;但求渐近线时可直接求出,也可以利用对称性来求解。
关键在于对比:双曲线的形状不变,但在坐标系中的位置改变,它的那些性质改变,那些性质不变?试归纳双曲线的几何性质。
变2:已知双曲线的渐近线方程是,且经过点(,3),求双曲线的标准方程。选题目的:在已知双曲线的渐近线的前提下
高一数学说课稿8
我说课的题目是《集合》。
《集合》是人教版必修1,第一章第一节的内容。
一.教材分析(首先我们一起来探讨一下教材的地位和内容)
集合与函数的内容历来是高中数学课程的传统内容,也是后继学习的基础。作为现代数学基础的集合论,它是一个具有独特地位的数学分支。高中数学课程是将集合作为一种语言来学习,它是刻画函数概念的基础知识和必备工具。
二、教学目标(接下来我们分析一下本节的教学目标,新《课程标准》制定的学习目标是)
(1)、学习目标
了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。
(2)过程与方法
启发学生发现问题,提出问题,通过学生的合作学习,探索出结论,并能有
条理的阐述自己的观点;
(3)、情感态度与价值观
通过概念的引入,让学生感受从特殊到一般的认知规律;
激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志;
三.教学重点与难点(接下来我们来看一下本节的重点和难点是什么)
重点 :(本节的重点应该是)使学生了解集合的含义与表示,理解集合间的关系和运算,会用集合语言表达数学对象或数学内容)
难点 :(在本节的学习过程中,学生们可能遇到的难点是)
(1)(要)区别较多的新概念及相应的新符号;
(2)(如何)选择恰当的方法来准确表示具体的集合;
四.教法分析
1、以学生为中心,重点采用了问题探究和启发式相结合的教学方法.
2、从实例、到类比、到推广的问题探究,激发学生学习兴趣,培养学
习能力启发,引导学生得出概念,深化概念.
3、利用多媒体辅助教学,节省时间,增大信息量,增强直观形象性.
五.说教学过程(下面我以集合的含义与表示为例谈一谈我的教学设计) (那么整个教学流程分这么几块)
“集合的含义与表示”的教学流程:
1问题引入
上体育课时,体育老师喊:高一**班同学集合!听到口令,咱班全体同学便会从四面八方聚集到体育老师身边,而那些不是咱班的学生便会自动走开。这样一来,体育来说的一声“集合”就把“某些特指的对象集在一起”了。
数学中的“集合”和体育老师的“集合”是一个概念吗?
2构建新知(那么构建新知的时候,主要围绕着以下几点展开)
(1) 集合的含义
数学中的“集合”和体育老师的集合并不是同一概念。体育老师所说的“集合”是动词,而数学中的集合是名词。同学们在体育老师的集合号令下形成的整体就是数学中集合的涵义。
师:一般的,某些特定的对象集在一起就成为集合,也简称集,例如”我校篮球队的队员“图书馆里所有的书”。同学们能不能再接着举出些集合的例子呢? (自由发言,教师复述其中正确的举例并板书出来)
(1)我们班所有女生
(2)所有偶数
(3)四大洋
······
(2) 集合与元素的关系
师:元素与集合的关系有“属于∈”及“不属于?
如A={2,4,8,16},则4∈A,8∈A,32( )A.(请学生填充)。
注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??
元素通常用小写的拉丁字母表示,如a、b、c、p、q??
2、“∈”的开口方向,不能把a∈A颠倒过来写。
(3) 集合的表示法
常用的有列举法和描述法。
列举法是把集合中的元素一一列举出来的方法。
描述法是用确定的条件表示某些对象是否属于这个集合的方法。
常见数集的专用符号
N:非负整数集(自然数集).
Q:有理数集
R:全体实数的集合
``````
3典例精析
例1, 判断下列对象是否能组成一个集合,并说明理由
1身材高大的人
2所有的一元二次方程
3所有的数学难题
4满足的实数所组成的集合
(在这里我要重点讲的是第四个问题,有的同学会认为x^2 一、教材分析
函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.
根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:
知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的'方法;
过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。
二、教法学法
为了实现本节课的教学目标,在教法上我采取了
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
三、教学过程
函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。
(一)创设情境,提出问题
(问题情境)(播放中央电视台天气预报的音乐)。如图为某地区20xx年元旦这一天24小时内的气温变化图,观察这张气温变化图:
[教师活动]引导学生观察图象,提出问题:
问题1:说出气温在哪些时段内是逐步升高的或下降的?
问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?
[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。这里,通过两个问题,引发学生的进一步学习的好奇心。
(二)探究发现建构概念
[学生活动]对于问题1,学生容易给出答案。问题2对学生来说较为抽象,不易回答。
[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)=4”这一情形进行描述.引导学生回答:对于自变量8f(1),那么函数f(x)是R上的单调增函数还是单调减函数?
2、若定义在R上的单调减函数f(x)满足f(1+a)四、教学评价
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感。学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流,以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯。让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础。
高一数学说课稿10
各位领导、各位老师:
大家好!
今天我说课的题目是《两角差的余弦公式》。我计划从教材背景、教学目标、教学方法、教学过程、教学评价等方面来谈谈我对本节课的理解。
背景分析
1、教材所处的地位和作用:
《两角差的余弦公式》是新课标人教版数学必修四第三章第一课时的教学内容,是本模块第一章《三角函数》和第二章《平面向量》相关知识的延续和拓展。其中心任务是通过已学知识,探索建立两角差的余弦公式。它不仅是前面已学的诱导公式的推广,也是后面其它和(差)角公式推导的基础和核心,具有承前启后的作用,是本章的重点内容之一。
2、重点,难点以及确定的依据:
对本节课来说,学生最大的困惑在于如何得到公式.所以,
本节课的教学重点是:两角差的余弦公式的探究和应用;
教学难点是:两角差的余弦公式的由来及证明;
引导学生通过主动参与,独立探索。
教学目标设计
(1)知识与技能:
本节课的知识技能目标定位在公式的向量法证明和应用上;学会运用分类讨论思想完善证明;学会正用、逆用、变用公式;学会运用整体思想,抓住公式的本质.在新旧知识的冲撞过程中,让学生自主地对知识进行重组、构建,形成属于自己的知识结构体系.
(2)过程与方法:
创设问题情景,调动学生已有的认知结构,激发学生的问题意识,展开提出问题、分析问题、解决问题的学习活动,让学生体会从“特殊”到“一般”的探究过程;在探究过程中体会化归、数形结合等数学思想;在公式的证明过程中,培养学生反思的好习惯;在公式的理解记忆过程中,让学生发现数学中的简洁、对称美;在公式的运用过程中,培养学生严谨的思维习惯和自我纠错能力.
(3)情感、态度与价值观:
体验科学探索的过程,鼓励学生大胆质疑、大胆猜想,培养学生的“问题意识”,使学生感受科学探索的乐趣,激励勇气,培养创新精神和良好的团队合作意识. 通过对猜想的验证,对公式证明的完善,培养学生实事求是的科学态度和科学精神.
教法设计
1、学情分析:
学生刚刚学习了同角三角函数的变换及平面向量的知识,对用举反例推翻猜想、运用单位圆、用向量解决三角问题已经有了一定的基础,但还远未达到综合运用这些方法自主探究和证明的水平.
教学手段:
(1)从知识的认知程序上看,老师看问题从整体到局部,而学生却是从局部到整体。本节课尝试将“带着知识走向学生”的接受式教学模式转变为“带着学生走向知识”的探究式教学模式,充分尊重学生的主体地位.
(2)本节课的教法采用了“一个主题两种教学”的设计模式.一个主题:公式探究与应用,两种教学:显形教学(知识能力教学)、隐性教学(情商培养),实践两种教学相互促进的人性化教学理念.
(3)在课堂上营造民主、开放、平等的教学氛围,注重教学评价的多元性,将简单的结果评价上升为对过程的评价;将一味的知识评价拓展为能力评价,突出学生的主体性,实现显形教学与隐性教学的双重评价,为全面发展学生打下基础.
(4)利用几何画板,通过计算机技术,给学生提供一种验证猜想合理性的途径. (教学媒体设计)
课堂结构设计:
引入课题,提出猜想,实验探究,严谨证明,例题训练,课堂小结
教学过程设计
1、引入课题:
例:如图所示,一个斜坡的高为6m,斜坡的水平长度为8m,已知作用在物体上的力F与水平方向的夹角为60°,且大小为10N ,在力F的作用下物体沿斜坡运动了3m,求力F作用在物体上的功W.
解: W =
= 30.
提问:1、解决问题需要求什么?
2、你能找到哪些与有关的条件?
3、能否利用这些条件求出?如果能,提出你的猜想.
4、怎样检验这些猜想是否正确?
【设计意图】生活实例引入,体现数学与实际生活的联系,也与物理(功的定义)、哲学(透过现象看本质)等相关学科相联系,增强学生的应用意识,激发学生的学习热情,同时也让学生体会数学知识的产生、发展过程.
2、提出猜想:
从特殊情况去猜测公式的结构形式.
令
令
分析:可见,我们的公式的形式应该与均有关系?他们之间存在怎样的代数关系呢?请同学们根据下表中数据,相互交流讨论,提出你的猜想.
用具体值检验猜想的合理性.
令则=
三角函数
三角函数值
猜想:
【设计意图】鼓励学生发挥想象力,大胆猜测,然后再去验证其合理性,增强学生探索问题、挑战困难的勇气.
3、实验探究:
【设计意图】让学生用几何画板进行数学实验, 激起学生的好奇心和探究欲望, 使学生体会到数学的系统演绎性和实验归纳性的两个侧面.
4、严谨证明:
(利用向量)
前一章我们刚刚学习完向量,并用向量知识解决了相关的几何问题,这里,我们能否用向量知识来推导两角差的余弦公式呢?我们来仔细观察猜想的结构,我们在什么地方见到过类似结构?在向量部分,求角的余弦有什么方法吗?
(学生:向量的数量积!)
证明:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角,它们终边与单位圆O的交点分别为A、B,则:
=, =
=
∴= (0≤≤)
思考:1、作为两向量的夹角,有没有限制条件?
2、如果不在[0,]这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系)
【设计意图】让学生经历用向量知识解出一个数学问题的过程,体会向量方法在数学探究过程中的简洁性。
思考:1、作为两向量的夹角,有没有限制条件?
2、如果不在[0,]这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系)
推广完善:令为、的夹角,
则
无论哪种情况,都有
小结:两角差的余弦公式:
(其中为任意角,简记为)
思考:请同学们仔细观察一下公式的结构,说说公式的结构有什么特点?应怎样记忆?(对学生的回答给予及时肯定)
【设计意图】引导学生关注两个向量的夹角θ与α-β的联系与区别,并通过观察和讨论,增强学生用数形结合、分类讨论的方法解决问题的意识,感受数学思维的严谨性.
(介绍单位圆的三角函数线法)
除了以上的证明方法,是否还有其它证法呢?
我们发现,这里涉及的是三角函数,是这个角的余弦问题,那我们还能不能考虑在单位圆里用三角函数线来推导呢?
请同学们课后自己在单位圆中画出、,并考虑如何用角的正弦线、余弦线来表示的余弦线?
这个问题作为课后思考题,请同学们课下相互讨论,共同探索。
【设计意图】根据教学实际,对教材进行适当安排,把单位圆三角函数线证法留作课后学生思考,为学生的课后探讨留有空间。
5、例题训练:
1、解决引例中的问题.
2、P127练习:已知,求.
(运用公式时应根据角的范围,正确确定两角正、余弦值的范围)
公式的逆用:.
4、公式活用:.
【设计意图】例1让学生运用所学解决实际问题;例2利用变式突破学生在运用公式过程中的易错点;例3对逆用公式解题加深认识;例4活用公式,加深学生对公式中两角形式变化的认识,强化整体思想。
6:课堂小结:
公式探索的一般步骤;公式的结构和功能;公式的运用应注意的问题。
7、作业:
P127 练习1、2、3;
.
【设计意图】让学生通过自己小结,反思学习过程,加深对公式的推导和应用过程的理解,促进知识的内化;然后用作业巩固本节课所学知识。
(附:板书设计)
§3.1.1 两角差的余弦公式
一、公式
二、证明
引例:
例2:
例3:
4:
小结:
教学评价分析
诊断性评价:
1.按常规,学生很可能想到先探究两角和的正弦公式,怎样想到先研究两角差的余弦公式是一个难点(但非重点),教学时可以直接提出研究两角差的余弦公式。但后面补充老教材的证明方法,让学生明白和与差内在的联系性与统一性,努力让学习过程自然。
2.尽管教材在前面的习题中,已经为用向量法证明两角差的余弦公式做了铺垫,多数学生仍难以想到.教师需要引导学生,联想到向量的数量积公式和单位圆上点的坐标特点,努力使数学思维显得自然、合理。
3.用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨的错误,教学时需要引导学生搞清楚两角差与相应向量的夹角的联系与区别。
预期效果:
1、让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。
2、激发学生的探究欲望,能够独立或合作提出推导其它三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。
3、培养学生的“问题意识”,在探索的过程中学会将“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的.
高一数学说课稿11
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情教法分析:
对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、学法指导:
在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ......
3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ......
通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情站境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。强调:① “从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” )。
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一个数列公差0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
高一数学说课稿12
各位评委、老师:
大家好,我说课的内容是人教A版《普通高中课程标准实验教科书A版数学必修一》第二章2.2.2《对数函数及其性质》。
我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。
一、教材分析
本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。
《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:
知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。
过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。
情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神.
结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难,制定如下的教学重点、难点:
重点:对数函数的概念、图象和性质;
难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;
二、学情分析
对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。
三、教学与学法
教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。
老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。
四.教学过程
教学过程分为以下环节:
实例引入、直观感知——总结类比、形成概念——类比探究、分析归纳——知识应用、提升能力——师生交流、归纳小结——作业布置
(一)实例引入、直观感知
1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.
问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数
问题二:如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图:为了引出对数函数
问题三:在关系式 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?
设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念.
2、 在2.2.1的例6中,考古学家利用 估算出土文物或古遗址的年代,对于每一个C14含量P,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式 中的 ,任取一个正的实数值,均有唯一的值与之对应,所以 的函数。
问题三:你能在以前的学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的特点)
问题四:你能类比指数函数得到此类函数的一般式吗?
设计意图:体现了类比和特殊到一般的数学思想
(二)总结类比、形成概念
问题五:你能根据指数函数的定义给出对数函数的定义吗?
(师生共同归纳出对数函数的定义)
问题六: 与 中的x,y的相同之处是什么?不同之处是什么?
设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域
(三)类比探究、分析归纳
问题:有了研究指数函数的经历,你会如何研究对数函数的性质?
设计意图:提示学生进行类比学习
合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。
,
合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出 与 验证。
设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。
教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。
合作探究3:对照指数函数的性质,总结归纳对数函数的性质.
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)
(四)知识应用、提升能力
例1:求下列函数的定义域
(1) ( ) (2) ( )
(该题主要考查对数函数 的定义域 ,可在此总结函数定义域的限制)
例2:利用对数函数的性质,比较下列各组数中两个数的大小:
(1) , (2) ,
(3) , (4) , ,
设计意图:学生通过回顾利用指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法
思考巩固:已知 ,比较m,n的大小
设计意图:该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想,但有一定难度
(五)师生交流、归纳小结
由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。
(六)布置作业
教材P73 练习1,2
设计意图:练习难度不大,是对本节知识的巩固。
高一数学说课稿13
各位领导 教师同仁:
我说课的内容是正切函数的性质和图像。
教材理解分析
《1,4.3 正切函数的性质与图像》是人教社A版必修4第一章第4节的第3小节的内容。是前面系统的学习了正弦与余弦函数的概念,图像及其性质以后滴内容
学习目标
1、掌握正切函数的性质及其应用
2、理解并掌握作正切函数图象的方法;
3、体会类比、换元、数形结合等思想方法。
学情分析
由于我们文科平行班基础不太好加之学习函数的图像及性质又是一个难点,自主学习必然会出现困难。加之教学时间紧,任务重,前面地学习也不是很好。
根据教材结构和学情我对具体地教学过程和设计作如下说明:
在学法上大胆采用高效课堂模式,让学生探究,大胆去掉非主线知识内容,内容程序尽量简洁明了,一课一得,便于学生掌握。教学过程共有这样几个方面
一、复习引入
(1)画出下列各角的正切线
(2)复习相关诱导公式
二、探究新知
探究一 正切函数的性质
探究二 正切函数的图像
三、新知运用
例1 求函数的定义域、周期和单调区间.
四、课堂练习
1、求函数y=tan3x的定义域,值域,单调增区间。
2、 观察正切曲线,写出满足下列条件x的范围:
(1) ; (2) ; (3)
五.小结与课后作业
高一数学说课稿14
一、说教材
1、教材的地位和作用
《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、 教学目标
(1)知识目标:
a、通过实例了解集合的含义,理解集合以及有关概念;
b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
(2)能力目标:
a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;
b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:
a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;
b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点
重点:集合的概念,元素与集合的关系。
难点:准确理解集合的概念。
二、学情分析(说学情)
对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。
三、说教法
针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。
四、学习指导(说学法)
教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。
五、教学过程
1、引入新课:
a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。
b、介绍集合论的创始者康托尔
2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。
3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。
教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。
4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。
5、集合的符号记法,为本节重点做好铺垫。
6、从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的含义。
7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。
8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。
9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。
10、知识的实际应用:
问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。
11、课堂小节
以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。
六、评价
教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。
七、教学反思
1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。
2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。
高一数学说课稿15
说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。
一、说教材
1、教材的地位、作用及编写意图
《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其 他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
2、教学目标的确定及依据。
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
(1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。
(2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。
(3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。
(4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键
重点:对数函数的概念、图象和性质;
难点:利用指数函数的图象和性质得到对数函数的图象和性质;
关键:抓住对数函数是指数函数的反函数这一要领。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用“从特殊到一般”、“从具体到抽象”的方法。
(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
(4)多媒体演示法。
三、说学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
四、说教学程序
1、复习导入
(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
2、认定目标(出示教学目标)
3、导学达标
按教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。 把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。
因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。
教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。
方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x= , , ,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象.
方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。
这样可以充分调动学生自主学习的积极性。
(3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。
作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。
由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)
设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。
4、巩固达标(见课件)
这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。
5、反馈练习(见课件)
习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。
6、归纳总结(见课件)
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
7、课外作业 :(1)完成P178 A组1、2、3题
(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?
五、说板书
板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。